日韩中文日韩欧美在线观看,亚洲人成网站999久久久综合,精品无码三级在线观看视频,亚洲一区爱区精品无码,亚洲第一AV无码专区,亚洲s久久久久一区二区,国产免费丝袜调教视频,国产在线视频一区二区三区,亚洲免费毛片,国产三级裸体视频无码

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當前位置: 首頁 > 行業(yè)資訊 > How trees could save the climate

How trees could save the climate

 Date:

July 4, 2019
Source:
ETH Zurich
Summary:

Around 0.9 billion hectares of land worldwide would be suitable for reforestation, which could ultimately capture two thirds of human-made carbon emissions. A study shows that shows this would be the most effective method to combat climate change.

Around 0.9 billion hectares of land worldwide would be suitable for reforestation, which could ultimately capture two thirds of human-made carbon emissions. The Crowther Lab of ETH Zurich has published a study in the journal Science that shows this would be the most effective method to combat climate change.

The Crowther Lab at ETH Zurich investigates nature-based solutions to climate change. In their latest study the researchers showed for the first time where in the world new trees could grow and how much carbon they would store. Study lead author and postdoc at the Crowther Lab Jean-François Bastin explains: "One aspect was of particular importance to us as we did the calculations: we ex-cluded cities or agricultural areas from the total restoration potential as these areas are needed for hu-man life."

Reforest an area the size of the USA

The researchers calculated that under the current climate conditions, Earth's land could support 4.4 billion hectares of continuous tree cover. That is 1.6 billion more than the currently existing 2.8 billion hectares. Of these 1.6 billion hectares, 0.9 billion hectares fulfill the criterion of not being used by hu-mans. This means that there is currently an area of the size of the US available for tree restoration. Once mature, these new forests could store 205 billion tonnes of carbon: about two thirds of the 300 billion tonnes of carbon that has been released into the atmosphere as a result of human activity since the Industrial Revolution.

According to Prof. Thomas Crowther, co-author of the study and founder of the Crowther Lab at ETH Zurich: "We all knew that restoring forests could play a part in tackling climate change, but we didn't really know how big the impact would be. Our study shows clearly that forest restoration is the best climate change solution available today. But we must act quickly, as new forests will take decades to mature and achieve their full potential as a source of natural carbon storage."

Russia best suited for reforestation

The study also shows which parts of the world are most suited to forest restoration. The greatest po-tential can be found in just six countries: Russia (151 million hectares); the US (103 million hectares); Canada (78.4 million hectares); Australia (58 million hectares); Brazil (49.7 million hectares); and China (40.2 million hectares).

Many current climate models are wrong in expecting climate change to increase global tree cover, the study warns. It finds that there is likely to be an increase in the area of northern boreal forests in re-gions such as Siberia, but tree cover there averages only 30 to 40 percent. These gains would be out-weighed by the losses suffered in dense tropical forests, which typically have 90 to 100 percent tree cover.

Look at Trees!

A tool on the Crowther Lab website (https://www.crowtherlab.com/maps-2/) enables users to look at any point on the globe, and find out how many trees could grow there and how much carbon they would store. It also offers lists of for-est restoration organisations. The Crowther Lab will also be present at this year's Scientifica (web-site available in German only: https://www.scientifica.ch/) to show the new tool to visitors.

The Crowther Lab uses nature as a solution to: 1) better allocate resources -- identifying those re-gions which, if restored appropriately, could have the biggest climate impact; 2) set realistic goals -- with measurable targets to maximise the impact of restoration projects; and 3) monitor progress -- to evaluate whether targets are being achieved over time, and take corrective action if necessary.

Story Source:

Materials provided by ETH ZurichNote: Content may be edited for style and length.


Journal Reference:

  1. Jean-Francois Bastin, Yelena Finegold, Claude Garcia, Danilo Mollicone, Marcelo Rezende, Devin Routh, Constantin M. Zohner, Thomas W. Crowther. The global tree restoration potentialScience, 2019; 365 (6448): 76 DOI: 10.1126/science.aax0848
辛集市| 华阴市| 易门县| 察隅县| 乳山市| 调兵山市| 大同县| 新巴尔虎左旗| 临武县| 苏尼特右旗| 望奎县| 威信县| 壶关县| 资中县| 上高县| 开远市| 晋宁县| 霸州市| 望奎县| 双辽市| 马鞍山市| 宜黄县| 许昌县| 阳江市| 新宁县| 光泽县| 哈巴河县| 桂东县| 黑山县| 柳州市| 綦江县| 宁河县| 鄢陵县| 大连市| 肇东市| 栾城县| 新竹市| 铁力市| 冷水江市| 石家庄市| 凤翔县|